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HYDRODYNAMIC INTERACTION OF TWO IDENTICAL LIQUID SPHERES 

IN LINEAR FLOW FIELD* 

A.Z. ZINCBBNKO 

In quasi-stationarly Stokes equations, the hydrodynamic interaction of two identical 
free of external forces fluid spherical particles is considered in linearflowfield 
of arbitrary type. Numerical results are given about the particles relative veloc- 
ity and intensity of force dipoles on spheres. Close-by and remote asymptotic ex- 
pansions of respective hydrodynamic functions are obtained. The results are of 
interest in the structural rheology of emulsions. 

Earlier, the hydrodynamic interaction of two solid spheres was investigated in linear 
flow field/l-_/, aswell as that of two drops in a medium which away from the particles is at 
rest. The used here investigation methods are similar to those defined in /5-8/. 

1. Statement of the problem. Consider two free of external forces liquid spherical 
particles of radius a and dynamical viscosity PIsubmerged in an incompressible fluid of vis- 
cosity pLI. The application of quasi-stationary Stokes equations is assumed insidethedrops 
and in the external medium. As the boundary condition on the surface of spheres, we take the 
impenetrability of the liquid , and continuity of tangential stresses. The surface tension at 
the interface is assumed fairly large, which permits the neglect of particle deviation from 
spherical and not consider the boundary condition for normal stresses. The surrounding flow 
field is of the form 

v,=vO+Q xx+E.x (v,,,Q,E=const) 

where 3, E are, respectively, the vorticity and the tensor of deformation rate of the unper- 
turbed flow: and vector x is drawn from the coordinate origin (see Fig.1). The velocities of 
transfer of spheres are determined by the condition of hydrodynamic forces being zero. The 
equality of bieng zero of the moments of forces relative to the center of particles is satis- 
fied automatically /7/. 

According to the method /9/ for the application of this problem to the calculation of the 
mean stress in a monodisperse emulsion it is necessary to determine the velocity \'of motion 
of sphere 1 relative to sphere 2, and, also, of the dipole force on sphere 1 

(1.1) 

where S,,n is the sphere surface 1 and the external normal to it; v is the velocity of fluid; 
and vector of stresses u,, is calculated on the outside of the surface /9/. Under conditions 
of the sphere free motion, the following general representations are valid /9/: 

V = 1 [!a2 x p + (1 - h’) E.p + (B - A) (p.E.p)pl (1.2) 
S = '!,na3 (2 + 5Wl + b)-l~e ((1 + WE + t(E.p) p + 

p (Eep)K + (P.E.P)IPPM - (*/d + 'I,WI), h = p'/p. 
where 1 is the distance between the centers of spheres, p is the unit vector of the line of 
centers, directed from sphere 2 to sphere 1, I is the unit tensor. The basic aim ofthiswork 
is the calculation and investigation of scalar functions A,B,K,L, M defining the interaction 
between spheres dependent on I, e(eu is the clearance between spheres). It suffices to con- 
sider three separate problems (the system of coordinates x1.x2,x1 is introduced, as shown in 
Fig.1). 

Problem 1. v, = (E,,x,,- E,,x,, 0). The stream does not actonthe spheres. The solution 
yields the value of K. 
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Problem 2. v, = (Gx,, 0, 0). 
The solution yields values of B 

Problem 3. v, = (-~/l~sa~l. 

The shift field gives rise to sphere velocity 
and K + L. 

(&Y,, 0. 0). 

-l/OES~z,E~IIxS). Under the action of this deformation axisym- 
metric flow, the spheres acquire the velocities (O,O,fVr*). 
sibility to calculate A and K f VsL + “IaM. 

The solution provides the pos- 

Note that the used here methods of investigation of problems 1 and 3 are simpler thanthe 
application of general representation /l/ of solution of Stokes equations in bispheric CO- 

ordinates. 

Fig.1 

2. Solution of problem 1. We apply the method of multiple reflections, similarly to 
/8/, which is equivalent to the construction of the exact solution. We pass to dimensionless 
variables normalizing the velocities with respect to E,,l, and lengths to 1. We seek the veloc- 
ity field in region e (between spheres) in the form 

ve=v_+v*+v**, v*,v**-+o (IxI-+m) 

The boundary conditions for v*are as follows: the field v, -i- v*(v*) has zero normal com- 
ponent on the sphere 1 (2); inside the sphere 1 (2) we have a Stokes flow which has at the 
boundary the same velocity and tangential stress as the field v, -I- V* IV*). To formulate bound- 
ary conditions forv** we change the places of spheres. It is sufficient to consider field v* 
which we seek by the method of reflection in the form 

u 
v* = 2 (&*$-I + +*) (2.1) 

k=1 

Each field V”’ satisfies the Stokes equations and is regular everywhere outside the i- 
the sphere and vanishes at infinity. 

The calculations are carried out in succession 
1 ?+I 1+1.1+1 v:“+v: +v+ _ $+I, >+a 1. J+P -v+ *... (2.2) 

where the initial + yr*o = v _, and vy”’ (j > 1) denotes the expansion of field ~2’ in the 

nefqhborhpod (i + I)-st sphere (indices 1, i f 1 are deduced in modulo 2). The transition from 

Y+ ’ tov_ “‘+’ is determined by the boundary conditions, as in /8/. 
We introduce two spherical systems of coordinates (rl, O1. cp,), (rL, Be, mP2). as shown in Fig.1. 

Angle cpi corresponds to positive direction of rotation around the axis Zi (cpz = --'pl =rp). Using 
the Lamb general solution of Stokes equations, we represent the sought field in the form 

(2.3) 
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where k = n for field v:' and k = -(n $1) for v:';PS2 is the adjoint Legendre function. 
The selection of special form of spherical harmonics is dictated by the form of v,. 

me in /8/, the formulas of transition from v>' to v,‘+’ are of the form 

W%=n+2+5(R_,) 
(n-1)(1---) c;>cpn+~, a+. (2.4) 

A ,J+l n(2n--1) 
,+%+I)= - fn+if (I + k) i 

_$&@%+i + [2 + X(2n + i)] B:'C;M-' 
1 

B?$* = 2(n-t r,(i +)i) I 
2 ;(:112;$) *) A$ 7asn+3 _ h (& _ 1) & +p+l> 

For representing fields vfr' in the form vy" in the neighborhood of (i + 1) sphere we 
have the relations 

(2.5) 

The initial condition vt" = v, yields 

AdJ' '=: I&V = 0 (n > 2), B,W' = I/*, B 10 n' - 0 (n> 3) (2.6) 

Using (2.1)- (2.6) it is possible to determine v*and, 
also, v**. 

by changing the places of spheres, 
For the resulting field ve the stress vector on sphere 1 is determined using gen- 

eral formulas /lo/. Calculating integral (l.l), we find 

K=--&~ 
-6 k_l 

(&$+l+ &.k, 
(2.7) 

Analytic calculation of the first reflections using the scheme (2.2)- (2.7) yields the 
distant asymptotic representation 

K= 2+5?. -+a'+- - 
I 

h-l 
3(1$V h-i-4 

-+ 3% a*+O(alo), a-0 
1 

(2.8) 

Ths subsequent reflections give 

The coefficients en(h) at nQ 172 were calculated using scheme (2.2)- (2.71 on a com- 
puter, similarly to /8/. 

Computation has shown a satisfactory rate of convergence of series (2.9) for any h even 
for touching particles. For example, for X= 00 and E =0 the calculated with the use of 
(2.91 for n< 76 and n < 172 the values of Kwere, respectively, --0,04717 and -0,04721, and 

h 

0.5 

; 

:0 
00 

e-1 

were to the third digit the same as those /4/ obtained by 
Table 1 exact solution in tangentially spherical coordinates. 

ok 1 o.l 1 o.o, 1 o not efear;; of -K X 10: are shown in Table 1. For 
s> 1 and k>O.5the relatzve error of formula (2.8) does 

. * 
113 161 204 209 For b= 0 it is possible using (2.4) and (2.5) to 
166 
216 % z %E 

obtain 

259 354 429 439 
275 373 450 459 MS, 
290 389 463 472 Yn ~ (2.10) 

- 
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From (2.4), (2.61, (2.7) and (2.10) follows the unexpected vanishing of all coefficients 
c,, and function K when I = 0. 

3. Solution of problem 2. 
fications we apply the method of /7/. 

For the construction of exact solution with some simpli- 
We introduce the bispherical coordinates E,n, linked 

with the cylindrical coordinates p,z by the relations 

z=*, 
ESiIlE 

p=-, p=cosg 
chr)-p 

(3.1) 

The spheres 1 and 2 are coordinate surfaces '1 = nl> 0 and q = -nl, respectively, if 
we set chqI = 1 + e/2, c = u sh ql. Satisfying Stokes equation rot(Av) = 0, we seek the cylind- 
rical velocity components in the region between spheres and inside them of the form 

up = v, (pF/c + X ++,) cos cp (3.2) 
ve = V, (X -4) sin cp, v, = v, @F/c + 20) co9 cp 

F=5&dW:,@), 

f = (ch q - p)“’ 

where P,,“’ (p), P, (p) are, respectively the Legendre adjoint function and oolynomial, and f,,, (pn, 
XW h are linear combination of functions exp [(nf l/&)1, exp[-((n +Vs)q]. Using the transforma- 
tion 

3 (2n + 1) f, = (2n + 1) %I + 2 (n + 2) I-L + 2 (n - 1) yn (3.3) 
6 (2~2 + 1)x,, = -(2n + 1) CL, - (2n + 7) fin - (2n - 5) y,, 
6 (2n + 1) $,, = -(an + 1) n (n + 1) a,, - (n + 1) (n + 2). 

(In + 3) IL - n (n - 1) (2n - 1) yn 

we introduce the additional functions a,,,&,,~,,. 
The difference form the case in /7/ is stipulated by the symmetry of the problemandthe 

inhomogeneity of the surrounding flow. We set 

%e = 2J,,' sh (n + ‘/J q + 24,0 (3.4) 

(fine, y,,') = 2 (J%,', N,') sh (n + l/1) n -&," 
' = 28,’ ch (n + Vt) q, f,,’ = C,’ sh (n + ‘/J q 

Tii, fin’. vi7 cp,‘) = (fJ,, fL,, AN,, B ) exp I-(n + l/2)1 q II 
4km = fi(GdV,Wn + 1) exp [- (n + :/,) I q II sign q 

The indexes e, i(i = 1,2) denote magnitudes related to regions shown in Fig.1; the upper 
sign corresponds to i = 1, the lower to i = 2. l%e inhomogeneous terms in expressions for 

%a'. B,', Il'n=, after substitutions into (3.3) and, then, into (3.2), yield the unperturbed flow 
v,; the perturbation of velocity, determined by the additional terms, vanish at infinity. 

Now for the construction of difference equations, defining the eight independent sequencies 

3,", J,, . . .t B,,‘, B,,, the results of /7/ are directly applicable. The solenoidality of flow In 
all regions with allowance for the continuity of velocity, and also the boundary conditions 

of impermeability constitute a system of three linear equations for J,,‘, Lf,,, iVf,+, (the second 
of relations (1.81, the second of equalities (1.10) and relation (1.12) for i = I,& = 1 of 
/7/) from which we obtain the formulas for the unknowns in terms of B,', B, (n - 1< mQn + 

1). AS the result, formulas (3.3) yield the representation of f,,“, x,,‘, $,,’ in terms of B$,, 

&l (n - 2,<m<n+2); a similar representation of f,,i, xx, I&,’ in terms of basic variables 
B,'and B, are obtained form the conditions of velocity continuity (formulas (1.9) of /7/J. 
Further, a suitable transformation of boundary condition of continuity of tangential stresses 
is provided by the expression C,,*in terms of B,‘, B,(n - I< m,< n + 1) (used below for cal- 
culating (3.5) and (3.6)) and reduce the problem to two difference equations of fourth order 
in B,’ and B, (formulas (1.19) and (1.16) of /7/ for i = I,& = 1, I, = 5). 

For arbitrary value of V, the only nonzero components z1 of forces acting on the spheres 

are of the form 

'F npeaV1 sh q&.(/2 “8, n (n + 1) C:, (3.5) 

Equating (3.5) to zero we obtain the relation between V, and G and by the same token 
function B. Integral (1.1) for AS,,, by virtue of symmetry and the Gauss-Ostrogradskii the- 

orem, is equal half of the corresponding integral over the sphere of large radius wit-h the 

center at the coordinate origin. The behavior of flow, as IX j+oo can be established from 

(3.1)- (3.4), taking into account the equation of continuity and the fact that forces and 
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their moments are equal zero. Thus, under conditions of free motion, we obtain 

Table 2 Table 3 

- 

0.1 

- 

0.t O*Oi 

- 

975 
411 
823 
670 
735 

2: 
1434 

1% 

2% 
-226 
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- 

to- h 

- 
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Ii; 0.5 

% 1 
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14% 5 
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3158 co 
-744 
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9186 
821 
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1095 
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zz 
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1552 
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1626 
8133 
1717 

1 
6529 
3836 
5207 
4620 
4591 
5018 
3078 

% 

2 

;z 

4586 
6576 
2503 
7739 
1862 

:!% 
8137 

8% 

8i% 

6% 

28iK) 
9437 

lo% 

9% 
130 
9492 

9: 

9135 

910: 

(3.6) 

The sums of series (3.5) and (3.6) were determined numerically over the limits of recur- 
rent sequencies, as in /7/. For each 5,~ pair a column of quantities B.fO", -(Ii + L)*l@ 
appears in Table 2. The calculations were carried out on a computer with doubled accuracy, 
which is essential for the passing to limit, as h+ DO and small E; for I = 00 theproposed 
here method is directly inapplicable /7/. In the case of solid spheres a number of values of 
n1 /l/ the function B(e) (E= 2 (chql- 1)) is tabulated in /4/. It proved that for the same 
qr and I = 10' the calculation of B by the proposed method yields a complete coincidence 

with /4/ up to E =0,0006; simultaneously, this method substantially differs from the method 
of calculation for the solid spheres /I/. 

The recurrent formulas /8/ of the method of reflection permit to obtainremoteasymptotic 
representations 

(3.7) 

where the first term of asymptotics K+L corresponds to results in 19,'. 
It would be possible to improve formulas (3.71 by supplementary reflections, however the 

experiment /8/ shows that in this problem when A*l,a.gi it is difficult to obtain sufficient 
accuracy wing to slow convergence, hence in the calculationof Band K+L a more universal 
method /7/ was applied. At the same time by the method of multiple reflectionsitispossible 
to prove the unexpected equality B =0 when h=O. The theorem of reciprocity /lo/ showsthat 
the equality 3 =O is valid if harmonics p_ s are absent in Lamb representationofthevelocity 
field near the spheres during their instantaneous normal motion to the line of centers in the 
quiescent at infinity medium. The absence of these harmonics when h =O can be established 
using recurrent formulas /8/ by obtaining relation of the type (2.10). 

The analysis of particle trajectories is outside the scope of this paper. Wewouldonly 
point out that integrals of relative motion /4/ and the equality B =O when ?.=O shows that 
the region of closed relative trajectories of centers of the two spheres in the steady shear 
flow in which the conjugate function of distribution is not determined by simple considera- 
tions /9/ which for small 1 proves to be considerably "finer" than for solid spheres /4/, and 
vanishes completely for h=O. 

4. Solution of problem 3. Using the general solution /ll/ of the Stokes equation 
for the stream function Y in coordinates E,n, and, also, the symmetry of the problem and 
the regularity of flows inside the spheres we have 
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C,’ = f {A,, esp [- (n - “,‘J I q II -I- B, exp [- (n t 3/2)1q/l} 
++,,e = cE,,sh q esp I- (n + 1, J / q 11 i F, sh (n - I/& q L- H, sit (II - ~5 J ‘1 

The upper sign corresponds to i = 1, the lower to the case of i = 3. The first term of 
expression for +," after substitution in the series /4/ yields the stream function Y,= 
--II~ E,,p% of the unperturbed flow: the additional terms define the velocity perturbation van- 
ishing at infinity. 

The first relation of (4.1) has formally the same form as that for motion of drops in 
medium quiescent at infinity, which permits the boundary conditions to be written using tire 
results in /5,6/ in the form 

%ze = $,' = R,, d$,e/dq = d$,‘.:dtj ii.?; 

d+ (*Is* - R,)idq” = hd’ (+,,I - R,)i’dq*, ‘1 = qt 

l?,(Tj)=qq exp [- (n-Ql1 _ exp [-(R +x/,1 q] 
2n-1 2n+3 1 

According to /ll/ the hydrodynamic forces are 

Flzm _FFIZ=5 - %V &(n -+- f)(F*+ &J (4.3) 

Independent of (4.3) being zero, the integral (1.1) for SSS can be calculated using the 
method as in Sect.3 

(4.4) 

Taking into account the linearity of the problem and the theorem of reciprocity /lo/, we 
can write 

F{= - 6nl",u 1k-,* (2A,, - A& - lE,sDI2I 14.5) 
S,, = 4isnpg3 (2 C 5%) f*+ k)-%,r - Zxp&V,*D 

where &,AX2 are the coefficients of resistance /8/ defined by infinite series /5,6/. The 
explicit expressions can be achieved for coefficients D(h, e),r(k,e) in terms of infinite ser- 
ies with the help of (4.l.)- (4.4). The respective formulas however, are unwieldy, and are 
not presented here. 

In Table 3 for each pair of h,e appears a column of quantities (1 - A)-IV, and (k' - 
'/,L + */&).104, obtained using (4.5) and (1.2). Numerical results are supplemented by remote 
asymptotic representations, obtained by the method of reflections 

AX++- .~o~t_ j$$L~+o(a') (4.6) 

K-t- +L+$jJ&-*c+2&5+ y*=“h:r d+O(a’) 
f+R 

The terms of order a3 correspond to results in /9/. For solid spheres the second term 

of the asymptotics of A is incorrect in the translation (and does not agree with (4.6) for 

h=m), the correct formula appears in the original /4/. 
The near asymptotics of functions A,K + 4/sL + ejSW can be obtained from (4.5). When 

s<(l coefficient A,,is close to its limit value /6/ for touching spheres. As shown by the 

analysis of numerical data, the quantity r differs from its limit value r* by o(s) uniformly 

over h, for k=O and I= co the coefficient D(E) has definitely a finite derivative when 
E = 0, while for O< h(m it differs from this limit value Pin any case by o(c). The 

quantities P, D* were obtained by numerical estimates. Using asymptotics /S/ for A,,, we 

have for fixed x<m 

1 1 

II 

n% +~lne+ 41 + o(l) (4.7) 
l-_A=- D+ T 

K$-..+++3Mr*-ii 3P(i+A) (l-A)+O(s), e--O 
2+3. 

The values of D*,b,,r* -tare adduced below: 

h-0 0.5 1 2 5 10 00 
D* G1.097 1.321 1.450 1.596 1.772 1.870 2.039 
bO xx 0.847 0.771 0.559 0.021 -6.212 11.009 - 
P-1=1.4041 1.6963 2.0175 0.9647 0.9363 6.9196 0.9104 
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It follows from (4.7) that K +VsL + VsM has an infinite derivative when s=O, if 
I<W. 

The asymptotics for A,, /8/ and formula (4.7) for I- A are nonuniformly suitable as 

)i'CQ. In region h>,l, e&l a rough but uniformly suitable estimate of 1-A can be obtained 
using formula /12/ 

Al, --'/*t (P) E-l. p=2hC 

where the functional f is defined in /12/. 
When R<m and e-0, function (i- A)-’ has an integrable singularity, in consequence of 

which a coagulation of fluid spheres is possible under the action of macroscopic deformation. 
However even in strong flows the system of spheresmayremain stable owing to the forces of 
repulsion between the two electric layers of the particle surfaces. Owing tothe small action 
radius these forces can be modelled by contact forces only hindering the coagulation. In such 
models under the action of strong macroscopic flow there occurs a temporary formation of 

doublets, and for the determination of mean stress in the system of liquid spheres it is nec- 
essary to determine the volume /9/ as well as the surface probability density for the vector 
separating the centers of the two particles. 

The author thanks A.M. Golovin of the constant interest in this work. 
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